On Quadratic Polynomials for the Number Field Sieve

نویسندگان

  • Brian Murphy
  • Richard P. Brent
چکیده

The newest, and asymptotically the fastest known integer factorisation algorithm is the number eld sieve. The area in which the number eld sieve has the greatest capacity for improvement is polynomial selection. The best known polynomial selection method nds quadratic polynomials. In this paper we examine the smoothness properties of integer values taken by these polynomials. Given a quadratic NFS polynomial f, let be its discriminant. We show that a prime p can divide values taken by f only if (=p) = 1. We measure the eeect of this residuosity property on the smoothness of f-values by adapting a parameter , developed for analysis of MPQS, to quadratic NFS poly-nomials. We estimate the yield of smooth values for these polynomials as a function of , and conclude that practical changes in might bring signiicant changes in the yield of smooth and almost smooth polynomial values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotations and Translations of Number Field Sieve Polynomials

We present an algorithm that finds polynomials with many roots modulo many primes by rotating candidate Number Field Sieve polynomials using the Chinese Remainder Theorem. We also present an algorithm that finds a polynomial with small coefficients among all integral translations of X of a given polynomial in ZZ[X]. These algorithms can be used to produce promising candidate Number Field Sieve ...

متن کامل

On Class Group Computations Using the Number Field Sieve

The best practical algorithm for class group computations in imaginary quadratic number fields (such as group structure, class number, discrete logarithm computations) is a variant of the quadratic sieve factoring algorithm. Paradoxical as it sounds, the principles of the number field sieve, in a strict sense, could not be applied to number field computations, yet. In this article we give an in...

متن کامل

The Sieve Re-Imagined: Integer Factorization Methods

In this paper, I explain the Quadratic Sieve, its Multiple Polynomial variation, the Number Field Sieve, and give some worked examples of the afore-mentioned algorithms. Using my own Maple implementation of the Quadratic Sieve, I explore the effect of altering one of the parameters of the Quadratic Sieve algorithm, with respect to both time and success rate.

متن کامل

Size Optimization of Sextic Polynomials in the Number Field Sieve

The general number field sieve (GNFS) is the most efficient algorithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the chosen polynomials in polynomial selection can be modelled in terms of size and root properties. In this paper, we describe some methods to optimize the size property of sextic polynomials.

متن کامل

Non-linear polynomial selection for the number field sieve

We present an algorithm to find two non-linear polynomials for the Number Field Sieve integer factorization method. This algorithm extends Montgomery’s “two quadratics” method; for degree 3, it gives two skewed polynomials with resultant O(N5/4), which improves on Williams O(N4/3) result [12].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998